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TECHNICAL NOTE 2035

A METHOD OF DETERMINING THE EFFECT OF AIRFLANE
STABILITY ON THE GUST LOAD FACTCR

By Bernard Mazelsky and Franklin W. Diederich
SUMMARY

The equations of motion of & conventional airplane penetrating a
gust are given in detail for determining the effects due to gtability
on the gust loed factor. A convenient numerical method is derived in
metrix notation which affords a systematic procedure of solving the
equations for a unit jump or arbitrary forcing function. The solutlion
for the airplene motions for the stick-free condition is modified by
neglecting the elevator terms so that the effects under similar stability
conditions may be calculated with the stick in a fixed position. If the
complete response of the airplane is known, wing and tail loads may be
computed fairly conveniently. Sample calculations were performed to
illustrate the application of the equations.

INTRODUCTION

In the past the attempts to study the most effective stability
perameters in s gust have been hampered by the complexity of the equa-
tions and the time consumed in their solution. In numerous analyses,
the pitch effects are either considered empirically or neglected
entirely. A method of calculation that would be feasible, would give
reasonebly accurate results, and would require only a moderate expendi-
ture of time is, therefore, needed for analyticel studies of alrplane
motions in gusts.

Anslytical solutions by means of operators have been made for
calculating the motions of a wing penetrating a sharp-edge gust (see
reference 1). An extension of this method for solving the more com-
plicated equations would be impractical. In reference 2, calculations
were made by an iterative method for obtaining the solutions of the
equations of motion in two degrees of freedom of a canard airplane.
Por this analysis the downwash effects could be neglected and the
equations thereby considerably simplified.
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The present analysis gives an application of the calculus of
finite differences for solving the equations of motion of airplanes in
gusty air. The numerical solutions have been derived in matrix notation
from the equetions of motion in three degrees of freedom - vertical,
pitch, and elevator displacement - forward-speed veriations being
neglected, and sample calculations are mede. For a complete under-
standing of the method, a working kmowledge of matrix operations is
required.

SYMBOLS

L 1ift; pounds
Cr, 1ift coefficlient——
o) angle of attack, radlans
ggﬁ slope of 1lift curve, per radian
A aspect ratio
p mass density of air, slugs per cubic foot
U gust-velocity, feet per second
v forward velocity, feet per second

1 v2
q dynamic pressure EpV
g acceleration due to gravity, feet per second per second
S area of surface, square feet
c reference chord, feet
W slrplane welight, pourds
ug mass parameter —1§§i———-)

& gz oec

8] nondimensional distance penetrated into gust, chords
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variable of integration

increment of s 1used in matrix solution

variable in recurrence formuls (g%)

nondimensional discontinuity taken to nearest integer due to

ZW.t+c
lag of tail penetration e As

normaelized unsteady-1ift function dve to penetration of a
sharp-edge gust

normslized unsteady-1lift function due to penetration of an
arbitrary-shape gust

- equivalent normalized unsteady-1ift function on tail due to

downwash caused by wing penetration into a sharp-edge gust

equivalent normelized unsteedy-lift function on tail due to
downwash caused by wing penetration of an arbitrary-
shape gust

normalized unsteady-lift function for s unit jump of angle
of sttack

equivalent normelized unsteady-1ift function on tail due to
downwash caused by a unit Jump of angle of attack on wing

normalized unsteady-downwash angle at horizontel tail due to
penetration of wing into a sharp-edge gust

normalized unsteady-downwash angle at horizontal tail due
to penetration of wing into an arbitrary-shape gust

normalized unsteady-downwash angle at horizontal tail due
to unit Jump of angle of attack on wing

transformed unsteedy-lift function Cr, for wing (l - CLmW)

transformed unsteady-1ift function CLm for teil (} - cLat)

load-factor increment encountered by airplane, multiples of
sccelerstion due to gravity

pitch angle, radians
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elevator-deflection angle, radians

horizontal distance from center of gravity of airplané to
eaerodynamic center of wing, positive when serodynamic
center is ahead of center of gravity, feet.

horizontel distance from center of gravity of airplene to
aerodynsmic center of tall, feet

distance between trailing edge of wing mean aerodynemic
chord to lesding edge of tail mean aerodynamic chord,
feet - g '

lag for downwash angle to be effective on tail when wing
undergoes a unit Jjump ofangle of-attack

byt
<—C— + 0.23
As

lag for unsteady-1ift function due to downwash to be effec-
tive on tail when wing undergoes a unit jump of angle of —

bt 0.80

—_+ -

ttack c
8 ac AB

distance between airplane center of-gravity and elevator
hinge, feet

Q.
tall-efficiency factor (7;)

steady-downwash angle per unit jump of angle of attack on
wing

~asymptotic value of downwash angle per unit Jump of angle

of attack on wing including effects due to unsteady 1ift
on tail

pltching moment of inertia of asirplane about center of
gravity, slug—feet2

moment of inertia of elevator about its hinge, slug-feet2

moment of inertia of control stick about its pivot,
slug-feet2
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H total hinge moment, positive when moment tends to depress
trailing edge

He gravitational moment of elevator about its hinge, positive
when moment tends to depress tralling edge, slug-feet

Hg gravitational moment of control stick about its pivot,
positive when moment tends to depress trailing edge,
slug-feet

r control gearing ratio, angular stick deflection divided by

angular elevator deflection

K viscous demping constant, in control system, pounds per foot
per second

Q ratio of demping veloclty to elevator velocity, feet per
second per radian per second

Chm elevator hinge-moment coefficient due to angle-of-attack
change on tall; floating tendency is positive when
surface floats against relative wind

Ch8 elevator hinge-moment coefficient due to elevator deflection;
restoring tendency is positive when surface is over-
balanced

dae

elevator-effectiveness factor

oC
(53% part of additional 1ift due to angular velocity of elevator
A caused by acceleration of potential flow

(g%%) part of additional 1lift due to angular velocity of elevator
B caused by effective increase in camber

(gg%) part of hinge moment due to angular velocity of elevator
A caused by accéeleration of potential flow

(g%%) part of hinge moment due to angular velocity of elevator
B caused by effective increase in camber

Operational symbols:

2
D, D2 differential operators EL, é——)
35’ 3g2
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¥y " single integration of arbitrery function y(s)

IIY double integration of erbitrary function y(s)

Matrix symbols:

, F, G constant elements in matrix solution

u—T_J

column matrix representing veriables in recurrence formula

column matrix representing the forcing function due to gust
in recurrence formula

[M] square matrix representing 1nverse ‘of the matrix coeffi- o
cients of— An, D26 and D°5 at point m

[gl], . .[EGT rectangular matrices representing constant elements
- " in recurrence formula '

L J row matrix

L :b metrices representing constant elements in recurrence

formule for stick-fixed condition

Subscripts:

e elevator
max ' mexiwum
W wing

t tail

DERIVATION OF METHOD i

Differentiel Equations of Motion

The evaluation of the effects of stability on the gust load factor
may be determined from an anslysis of the motions of the airplane under
various stabllity conditions. In setting up the differential equations,
the following assumptions are made:
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(2) The sirplane is free to move vertically and to pitch about
its lateral axis and has an elevator restrained only by the force
produced by the viscous friction in the control system.

(b) The airplane is in steady level flight before entering the
gust and has initially no displacements, veloclties, and accelerations
with regard to its degrees of freedom.

(c) The forward speed is constant.

(d) The forces producing the hinge moment on the elevator are
steady-state forces.

(e) The over-all serodynamic force on the whole tall is a tran-
sient force.

An equation of equilibrium exists between lnertia and aerodynamic
forces and moments for each degree of freedom. In figure 1, the
forces and moments acting on a conventional airplane are shown. All
distences, forces, and moments are shown in a positlve direction. The
three equations representing the incrementsl forces and moments become
(see fig. 1)

o .
Wan =WEZL o1 4Lt =Wong + W Ant (1)
at2 &
VE
I3 D0 = Wiy Any - Wit Ant (2)

2 2
Ie © (026 + D) -He(gAn-ZhV_.D29+
2 c2

rEsl—rg—(rD%-D?e)-Hsgaﬂ=H . (3)

The transient aerodynamic forces produced by the girplane
penetrating the gust and the forces due to 1ts motion relative to an
equilibrium position mey be appropriately described by a set of
integral equations. That part of.the force due to the penetration of
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the gust 1s independent of the motions and 1s therefore analogous to
the forcing function acting on any dynamic system. The forces produced
for each degree of freedom must be sccounted for separately. These
individual forces are described by a number of Duhamel's integrals.

If superposition is valid, the individuel forces may be summed to give
the total force acting on the body due to its motion. These aero-
dynamic forces mey be converted to their corresponding load-factor
increments. Accordingly, for the motion of the wing, the load-factor
increment Any 1s described by the following integral equation:

8 81
Any(s1) = Kl;/; 1 Cng(sl - 8)D U;;x ds - Kuh/; CLaw(Bl - s)an(s) ds +

81

K7“/;Sl CLQW(Sl - 5)D8 ds - Kioh/; Cqu(Sl - 8)D2%9 as (%)

where the coefficlents of the Integrals are

Ky = (%)w 5vs % (ka)
n - (32, 85 s ()
K = (%E—L)W FE v (ke)
mo = (58], 5@ ()

The expression for the forces scting on the tall correspond to
the terms describing the wing together with the’ forces caused by the
interaction of the wing and the tsil. This last effect, called down-
wash, introduces additional Duhemel's integrals which are functions of
the motions of the wing. The summations of the integrals represent
the total aerodynamic forces on the tail and mey be converted to load-
factor increments as follows:
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psL . s1 .
Ant(s1) = Kp JO CLgt(sl' 8)D T ds + K3j; CLeg(Sl' s)D ds -

S 5 -
K5/; 1 CLObt,(Sl- s)An(s) ds - K6/; 1 cLea(él_ s)An(s) ds +

: 81 51
Kg . CLat(sl- s)D8 ds + KQL/; CLEa(Sl- s)D6 ds +

51 81
KllL O (51 - 8)D°8 ds - Klzfo CLEm(sl_s)Dee ds +

81 81 :
K13J; CLq, (51 - 8)D5 ds + Klufo CLy(s1 -8)D28 ds  (5)

where the coefficients of the integrals are

] (dCL)
da s
- KL gE NS S e
(Ea_,')w
d
X3 = -Kp Efl- _ o (50)
(&
a S
X5 = Ky dthn—;- : (5¢)
E)w
de
=
‘Ex,— t St

K8=K7@-n—§' | (5e)
W
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Ky = K8 g_&; L h _' (5¢)
- (1), gl 59
AR At (o)
K3 = ((;T(}L)t 5T E | 2

B, o

_ B St .poct Ay |foCL
Kib =35V cAt-%Q—-‘[EﬁgA-F

de,
Either experimental or theoretical values msy be used for 352
oCL, €1,
sppearing in equation (5i) and ( ~ and in equation (5j3).
P ¢ 305/ 305/ 5

Some theoretical values are given in figure 1(a) of reference 3. Other
expressions appearing in equations (5) and (5a) to (53) are derived in
the section entitled "Aerodynamic Coefficients." With the load-factor
Increments Any and Ant expressed as a function of-the aerodynamic

coefficients and airplane configuration, equation (2) can be expressed
in terms of the airplane parameters. All body moments are taken sbout
the center of gravity end assumed positive in the nose-up direction.

The hinge moment due to the aerodynemic forces, assumed positive
when the trailing edge is depressed, is set equal to the inertis hinge
moment taken about the axis of rotation of the elevator. An expression
for the total hinge moment H in terms of the aserodynamic character-
istics and configuration of the airplane is required. The total hinge
moment is made up of the aerodynamic hinge moment due to a change in
angle of attack on the tail and the hinge moment due to elevator
deflection. : :
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The equation for the total hinge moment is as follows:

=1 i
U . x¢ n ds - Ky79 + Kig DO +
Umax 0

E = K5

51 81
K19 f eol51 - s)on(s) ds - Koo f €1 - 8)D6 ds +
0 0] '

Ko fSl a(él s)D?6 ds - Koo f51 eg(s1 - 8)D U_as +
e -— - -
0 ' 0 Umax

K038 - Kp) DB . (6)

where the coefficients are

Ki5 = - gUmxvsechace (6s.)
K16 = - 5 cBeCelChq (6m)
K17 = - gvesececha (6¢)
K18 = & Pecelng = (6a)
Kig = g cSeceChy, %}i" g (6e)
Koo = % V2SeceChy, g—; ' (6r)
Kol = - 2 V@Secely, & | (66)

ae .
K22 = 5 UmaxVSeceChg 37 (én)



12 : ' N . NACA TF 2035

K3 = 5 VPSeceChg (61)

o Ch\ fet . L2k
Kol = 5 VBeCeSg—p (sﬁs)A +‘<&?‘)t<$'s 5T * WBwces( (69

The Duhamel's integrals appearing in equation (6) are not due-to
any unsteady hinge moments, but merely afford a means of expressing
the effects due to downwash. These integrals establish a relationship
between the changes of=angle of attack on the tall caused by the changes
of angle of atteck on the wing. If the value of the expression in
brackets in equation (63) cannot be determined experimentally, its
value is given theoretically with the aid of figure 1(b) of reference 3.

For the purpose of simplifying the differential equations,
equations (2) and (3) are rewritten as follows:

D% = Kp5 Any - Kp6 Ang

(1)
Ko7 0?6 +-Kog D?8 + Kpg An = H
where the coefficients are
Wi,c2
Kog = I:,r; (Te)
Wiy c2
Kog = = (Tp)
Ko7 = <Ie + Help - rIs)f (7c)
2
- y2
Kog = (Ie + rals)c—a (7d)
Kog = -(F + tHy)g (Te)
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Aerodynamic Coefficients

Unsteady 1ift.- Theoretical unsteady-1ift functions due to both a
unit Jump of angle of attack and a penetration of a sharp-edge gust are
given In reference 1 for elliptical surfaces of several aspect ratios
for incompressible flow. The normalized functions are reproduced here
in terms of the whole reference chord of the wing as distinguished from
the half-chord notation used in reference 1.

For a unit jump of angle of attack,

%(S)A=3 = l.OOO - 99283e?l'08os
CLols), = 1.000 - 0.361e70-T62 > (8)
Oro(8),_ o= 1.000 - 0.165670:0998 _ g 335,-0+600s
J
For a penetration of a sharp-edge gust,
\

-1.116s 6.40s

CLg(s)a=3 = 1.000 - 0,679 - 0.227e”

CLS(S)A=6 = 1.000 - O.l!-)-l-8e“o-5803 - 0.272e-1-ll-505 - o"lgse-é.OOS ? (9)
CLg(S)A=q:= 1.000 - 0.236e“3'115s- o.513e'°'7285 . 0’l71e-h'8hs.J

The expressions for the finite-aspect-ratio unsteady-1ift Pfunctions
were derived using the midchord of the elliptical surface as the
reference chord.

In establishing the unsteady-1ift functions on the tail, the
exponents of the foregoing expressions must be multiplied by the
ratio c/ct In order to convert these expressions fraom tail chords to
wing chords since they involve the distance traveled by the airplane
measured in terms of the wing chord.

Unsteady downwash.- The theoreticg]l value of the unsteady-downwash
angle at the horizontsl tail due to g unit Jump of angle of attack on
the wing is obtained by eveluating equation (lg of reference 4 for an
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average configuration. The result msy be normalized and approximated
by step functions to give the desired function ¢y. However, the curve
in figure 2(a) 1s seen to be principally a function of the distance
between the trailing edge of the wing and the leading edge of the tail
and this distance, due to configuration plus an additionsl aerodynamic
lag, accounts for the interval between negetive and positive step’
functions. For the unsteady-downwash-asngle function due to penetration
of a gust- €g, an additional lag of Q.75 chord is applied to these

step functions. (See fig. 2(b).) Figure 9 of reference 4 indicates
that tall length does not affect the magnitude of the function appreci-
ably but merely tends to affect the intervel of discontinuity. In '
order to generalize the functions €z and ¢€g with respect to ailr-
plane-tail length, the lag interval is considered as a sum of the
distance from the trailing edge of the wing to the leading edge of the
tail plus an additional aercdynemic lag of 0.23 chord. The steady-
state values of ¢y and €g were found to be approximately equal to
the value for de/da. '

The effective unsteady-1ift functlion on the teill due to the down-
wash from a unit jump of angle of attack on the wing may be determined
by a similar procedure. With the résults obtained from the solution
of equation (1) of reference Uyequation (2) in this same reference can
be evaluated. The results for an average configuration, when normalized
and approximated by step functions in a menner referred to previously,
give the desired function Cre,. (see fig. 3(a).) The effective

unsteady-1ift function due to downwesh which results from the penetra-
tion of the wing in a sharp-edge gust—"CLeg is obtained by epplying an

additional lag of 0.75 chord to the step functions describing Crgy.

(See fig. 3(b).) By an analysis similar to the one used to generalize
the functions for unsteady-downwash angles, these two unsteady-1ift
functions are generalized with respect to tall length by considering
the total-lag interval from negative to positive step functions as a
sum of the distance from the trailing edge of the wing to the leading
edge.of the tail plus.an edditional serodynsmic lag of 0.80 chord.

The steady-state velue del/da is approximstely equal to 90 percent of
the value for de/da.

Transformation to Matrices

Stick-free stability.- The integral relationships required for
transforming the differential equation into a form for numerical solution
are glven in gppendix A. In the process of obteining the numerical
solution, which is in the form of a recurrence formula, a number of
constants were used to simplify the writing of the final solution.

Thesé constants, which appear as elements of & square matrix and several
rectangular matrices, are in terms of the airplane stability
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coefficients X1 to Kpg, the transformed unsteady-11ft functions B
and C, and the increment As. The constants Kj to Kpog are defined

in appendix B. The constants given in appendix B are for a six-point
solution, that is, for a recurrence formulae containing six previously
known values of the varisbles to be solved. A six-point solution was
selected in this paper since i% is believed that the transformed
unsteady-1lift functions B and C can be approximated by six values
at 1.5-chord intervaels with sufficient accuracy even though only a
moderate expenditure of time is required. The accuracy of the numerical
solution would largely depend upon the size of the interval and the
rapidity of the motions that the airplane undergoes when disturbed from
equilibrium. For asirplanes with a high mass parsmeter, a high moment -
of inertie gbout the center of gravity, and a high moment of inertiea
for the elevator and stick, the accuracy of the method is expected to
be improved for the given six-point solution.

Certain terms appeasring in the equations for the E and F con-
stants defined in appendix B have the subscript m - Ig;, and certain
terms in the equations for the G constants in this same appendix have

sz; + 0.80 Z%t. + 0.23
the subscript m - 1¢, where 1ICp, = — and 1l¢ = — Qs
The physical significance of these terms in the equations for the
constants is attributed to a lag of tail forces and hinge moments
existing on the tail which were caused by the effects of the unsteady-
downwash functions. (See figs. 2(a) and 3(a).) In order to express
these effects mathematically, two values of the constant must be
evaluated, one value with the term containing the subscript neglected
and the other value with this term retained in its calculation., For
values of m <i¢gr, and m < 1l¢, the first values of the constants are
used in the calculations; for extended values of m, that is, m 2 10T,
and m 2 le, the second value is used. 8Since the numerical evaluation
is made for a predetermined interval, the amount of lag specified by
the discrepancies in the unsteady-downwash functions cannot conveniently
be taken into account exactly; therefore, the amount of lag is taken
to the nearest value of m.

When the constants E, F, and G are assembled into a square
metrix and a series of rectangular matrices, the three transformed
equations may be solved slmultaneously by an inversion of the square
matrix. The variables describing the motion of the airplane can then
be solved for the stick-free condition by the following recurrence
formule:
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r An ) )
5
o) An
b 2 R o4 o
= g
g PR < BNE e Bl et B o 20)
- m m T i,
IT m-2 m-6
5 .
\IIDz Jm_l
J
U1
where the forcing-function matrix {Upf is defined in appendix C for
U3

either a sharp-edge gust or.one of arbitrary shape. With the aid of
equations derived in appendix A, equation (10) is evaluated in a meanner
analogous to the solution of the wing penetrating a sharp-edge gust
described in the section of the paper entitled "Solution of One Degree
of Freedom."

The rectangular metrices [S] are evaluated together with the

square matrix [M] in terms of the constents E, F, and G defined in
appendix B. The square matrix represents the inverse of the matrix of

the coefficients of An, D29, end D°5 at the point m.

Stick-fixed stabllity.- The motions of the airplane with the
elevator in a locked position may be determined from the stick-free
stability equations by modifying the matrices appearing in equation (10).
The effect of eliminating the elevator motions is to eliminate in the
numerical solution certain E and F constants and a1l the G constants.
Also, appropriate changes in the recurrence formuls are made by
modifying the square and rectangular metrices and the column matrices
containing the variables and their integrations describing the elevator
motions. In appendix B the modified values of the matrices [Mlg and [slg

are presented and are writiten with a subscript zero to differentiate
them from the stick-free condition.

The forcing functions Uyl and Uz remain unchanged whereas the
function U3 1is eliminated. In accordance with the previously cited
changes, the followlng recurrence formula is obtained and can be
evaluated in s manner similar to that for the sick-free condition:

An .
: D26 An
%59} = [Mlo {gl} +[81] 5 n + @2]0 D20 + ... + [8d], 'SEng ((11)
= Zn D20 ' D26 D28
. . m-2 I n-6
17D°6
m-1 )




NACA TN 2035 . 17

APPLICATION OF METHCD

Solution of One Degree of Freedonm

The comparison of & response 10 a dynamic system calculated exactly
to the response calculated by the numerical method derived in appendix A
will help clarify this method as well as give an estimate of the accuracy
to be expected when applied to a more complicated system. In order to
demonstrate the validity of the numerical integration method, a response
to penetration of a sharp-edge gust has been calculated for a wing
restreined in all but the vertical direction. The change in 11ift
coefficient due to the gust and due to motion has been calculated as a
function of wing penetration. Assuming e unit Jump in angle of attack

due to the gust g-= 1 gives the equation of motion as

4acr, Rl '
Op(s1) = 3o~ Orgls) - ug Cro(s1 - 8)CL(s) @s (12)
0
where Hg 1s defined as the mass parameter of the wing as follows:

M 2W .
g~ d4CL
8 3 SeC

In reference 1, Jones has solved equation (12) by operational
methods for different .values of mass parameter pg. All calculations
were made for a wing of aspect ratio 6. In reference 1 the unsteady-
lift functions CLg and Cr, are defined as functlons of half-chord

while in this paper they are a function of whole chords as well as
being expressed as a fraction of the steady-state value. The exact
solution of the response using the unsteady-lift functions for aspect
ratio 6 and a value of pg = 13.2 (or in Jones! notation u = 124) is
shown in figure 12 of reference 1. This curve is reproduced herein in
figure 4 as a function of whole chords.
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The transformation of-equation (12) to the following recurrence
formula can be accomplished with the aid of the equations found in
appendix A:

(Cry )
Cly-1
e, 1 _CL As [Bo 4By 2Bp 4B3 2B} 4Bs5 Bg gllz-ag
m =g Tan " kg m ‘“u—g?’s’3’3’3’3'_3'<C1m:13+
5|

-6,

(13)

where : _

L. CL 1
W =yt AS<§9E Cly *+ 5% Cly-1 - 35 g * §E_CLm-3) (1)

The following numerical values are substituted in equation (13):

dCr,

r 1.50x%
i}é = 0.0760
As = 0.75 chord
B(s) =1 - CLQ(S)A=6
(where the values Bg, B1, . . . B§ &re computed for the inter-

val As = 0.75 chord from normaslized values of the function CLa(S)A=6

shown in fig. 9 of reference 1). The reason for choosing a smaller
interval is that the mass parameter ug is very low. The resulting
recurrence formula is given as follows:

C, :
CLm =_.r<])‘]ﬁ<l.50ﬁ.0]3%1"1" - O.O7§76Im_1 - 0..029?%_1 + 0.0162C[m_2 +

o.ooe56ch_3“+ o.oomoch_h + 0.00167ch_5 + o.om265czm_6) (15}
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The forcing function Cr, is computed for an interval
&m

of As = 0.75 chord from normslized values of the curve of figure 9 of
reference 1. Equation (15) can be computed step by step in a manner
similer to that described previously. The results of these numerical
computations are shown in figure 4 together with the exact solution
obtained by operational methods. C

Solution of Stick-Fixed Condition

In order to establish a genersl procedure for performing the
necessary calculgtions in & stebility anglysis, an illustrative example
is presented in detail. The merodynemic characteristics corresponding
to the configuration of a modern transport airplane were selected. The
parameters necessary for a stick-fixed anslysis are shown in table I.
Values of 14 and 1y are given for three center-of-gravity positions.
Accordingly, the stability constants Kj to Kpg may be evaluated by
equations (ka) to (4d), (5a) to (53), (6a) to (63), and (Ta) to (Te).
The results ere shown in table II for those constants involving only
the stick-fixed conditiomn.

The unsteady-1ift functions due to a unit jump of angle of attack
on the wing or tail were calculated from equation (8). Note that the
tall unsteady-1ift functions must be expressed in wing chords by
multiplying the value of s by c/ct. The B(s) and C(s) functions
for infinite aspect ratlo for an interval of As = 1.5 chords is shown
in table IIT. Together with the constants K; to Kgg, B(s), C(s),
and As, the E, F, and G elements can be calculated with the use of the
equations in eppendix B. These elements of the matrices [M] and [5]
are shown both for the stick-free condition and for the stick-fixed
condition in this appendix. Accordingly, the values for the constants E
and F required for the stick-fixed condition are shown in table IV for
an airplane with the center of gravity at 25 percent of the wing mean.
aerodynamic chord. The E and F elements are given as a function of the
veriable '‘m in the recurrence formuls. None of the G elements are
required for the stick-fixed condition. Since a discontinuity due to the
effective unsteady-lift coefficients on the tail caused by a unit Jump
of angle of attack on the wing CLGG ccecurs at m = 2, two values of

the elements Ej, Fy, and Fp appear in the matrix [M],. Consequently,
two values of the matrix [MJg have to be calculsted. '
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U1
The forcing functlions represented by the column matrix sUp({ can be
U3
calculated by equation (Cl) for a sharp-edge gust or by equations (C2)
and (C3) for an arbitrary-shape gust. The unsteady-lift functions due
to penetration of a sharp-edge gust CLg(s) were calculated by equa-

tions (9). By a method similar to the one used for the unsteady-1ift
functions due to a unit jump of angle of-attack on the wing, the tail
unsteady-1ift function due to penetration of a sharp-edge gust CLgt(S)

is expressed in wing chords by multiplying the value of s by c/ct.
The effective normalized unsteady-l1ift coefficient on the tail due to
wing penetration GLEg(S) is shown in figure 3(b). Although the dis-

continuity in this function for the configurstion considered occurs

at m = 3 1o the nearest integer, the value et m = 2 was chosen for
simplification since the length of the discontinuity determined by
reference 4 is not very accurate and the length of discontinuity due to
ZW’t+c

< As is equal to 2 to the nearest
integer. Therefore, 8ll discontinuities are made to occur at m = 2
in the sample calculations. The forcing functions Uy and Us have
been calculated for a sharp-edge gust for_an airplane with the center
of gravity at 25 percent of the mean aerodynamic chord and the results
are shown in table V. '

lag of taill penetration T =

The responses were calculated by equation (11) together with the
formulas given by equations (A5) and (A8) ofappendix A in a manner
previously ocutlined for the celculation of the simplified example. In
figure 5 the tlme histories of acceleration increment and sngle of
pitch about the center of gravity of the airplane penetrating a sharp-
edge gust ere shown from an evaluation of the recurrence formuls for
an average center-of-gravity position. The lcad-factor increment—at -
the center of gravity can be broken up into wing and tall load-factor
increments by evaluating equation (4) for determining Any,(s)} and
then subtracting that function from An{(s) to obtain the load-factor
increment on the tail Ang(s). The results of these calculations are
also shown in figure 5.

Although sample calculations are not given for the two other _..
center-of-grevity positions, the results are shown in the form of
maximum load-factor increments Anpy,x for a sharp-edge gust and two
gradient flat=topped gusts at three center-of-gravity positions in
figure 6. The responses to the gradient gusts can either be calculated
by equations (C2) and (C3) or by the alternate method previously described,
which in this case would be the more expeditious since three gust—shapes
are considered in this paper.
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DISCUSSION

An estimate of the accuracy to be expécted in the solution of the
equations of motion by the matrix method may be determined by an inspec-
tion of figure 4 where both the exact and numerical solutions are given
for the 1ift coefficient of a wing penetrating a sharp-edge gust. The
numerical solution approximstes the exact solution very well, except for
the discrepancies occurring at the beginning of the curve, This condi-
tion will exist in most cases because the first point of the motion is
computed from only those terms at time m of the recurrence equation,
the second point is computed from those terms at times m and m - 1,
and the third point is computed from those terms at times m, m - 1,
and m - 2. In like manner, the other points can be computed until the
full recurrence equation is in use. The error reduces as the mass
parsmeter increases since the motion for the first few calculated values
is reduced. Consequently, for low mass parameters where the motion is
rapld a smaller increment of As than 1.5 chords must be taken. If
smeller increments are required, the values of B(s) and C{s) may
have tc be approximated by more than Just six points, otherwise the
assumption that these functions are zero after the last point is not
Justified. In order to overcome this difficulty, the recurrence
equation should be calculated from m =0 to m =6 for an increment
of As less than 1.5 chords. The recurrence formula is then reevaluated
for an increment of As = 1.5 chords by using values of the variables
and their corresponding Integrals taken from the first calculation. In
addition to the effects of mass parameter, the accuracy is also a
function of the forcing function and their corresponding integrals
teken from the first calculstion at intervals of As = 1.5 chords. For
forcing functions having a large initiasl slope, the motion for the first
few steps would agein be large and therefore the errors corresponding
to its calculation would be substantislly increased. As before, the
errors mey be minimized by using a larger number of small increments
of As, Attention to the details of calculation for the sources of
error pointed out, however, should leed to accuracies of calculation
by the matrix method for the stick-fixed and stick-free conditions that
are at least as good as those shown for the single-degree-of-freedom
case in figure k.

The assumptions mede In the derivation of the differential equations
impose certain limitations other than that of confining the treatment
to longitudinal-stability effects alone. The length of the transient
response to be calculated 1s limited since the effect of wvariations in
forward speed was neglected. The iInclusion of variations in forward
speed, however, would unduly complicate the problem at the present time.
Another limitation to consider is the effect the pilot has on the
handling of the airplane. If the pilot's reactions are proportional _
either to the accelerations, velocities, rate of change of acceleration,
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or to various combinations of them, the restraint cen be included in
the calculation of the airplane motions by assuming these effects on
the stick are due to an automstlic pilots However, knowledge of the
pilot's behavior when flying through turbulent air is insufficient—at—
the present time to warrant any such representation.

Examinetion of the sample total-load-factor respomse curve in
figure 5 shows a discontinuity occurring approximstely at the time when
the tail first enters the gust. As seen, the discontinuity arises from
the load celculated to be on the tail and 1s a result of the combination
of the downwash effects on the taill with the effects of-gust penetra-
tion. Although this discontinuity in the response does not actuslly
exist, it 1s allowed to remain in this form for the determinstion of-
the response to arbitrary gust shapes when the response to the sharp-
edge gust 1is used as an indicial response. In this way, the new
response does not depend upon the manner in which the dlscontinuity is
faired.

The curves shown in figure 6 illustrate the results of the use of
the method for determining the effect of center-of-gravity position and
gust-gradient distance on the gust-load response of a particular air-
plane. The curves show that the effect of_airplane stability may be
important in determining the gust load factor on an airplsne. The gust-
load-factor increment can be sppreciably affected by the center-of-
gravity position when the airplane is traversing large gradient gusts.
A rearward center-of-gravity position, representing & decrease in
stability, increases the maximum load-factor increment Anpgx. On the
other hand, with the center of gravity in a forward position, the
stebility is increased and the corresponding meximum load-factor
increment—is decressed.

All the computations involved in the solution of the complicated
integrel equations of motion of an airplane penetrating s gust have been
reduced by the method of this paper to simple, but lengthy, arithmetic
operations. The use of some type of high-speed automatic computing
machine (such as the Bell Telephone Laboratories X-66TL4 relay computer
in use at the Langley Laboratory) would help overcome the difficulty
of performing these computations. If the problem is set up in a machine,
"the length of time required for the computation of the stick-fixed
stability equations for a single condition would ususlly require some- .
what less than 1 hour to approximately 8 hours, depending on the type
of machine. The initial time required for setting up the problem on
the machine would appear less significant when the number of-solutiocns
of the equations 1s increased. :
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CONCLUDING REMARKS

The numerical method derived in matrix notastion for solving the
differential equations of motion provides a means for determining the
effect of the verious stebillity parameters on the gust load factor in
a reasonsble time considering the complexity of the problem. Although
the method predicts the total lomd-factor increment on the airplane,
separate wing and tall loads may be computed with comparative ease.

Langley Aeronsutical Laboratory :
National Advisory Committee for Aeronasutics
Langley Air Force Base, Va., November 8, 1949
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APPENDIX A
SOLUTION OF EQUATIONS BY A METHOD OF NUMERICAL INTEGRATIONS

The solution of the integral equations may be accomplished by the
calculus of finite differences. A recurrence formula is obtzined In
this manner for the varisbleés in terms of their preceding values and .
the integrals of the preceding wvalues. '

Two mathematical operations are required for a solution of the
equations by the method considered in this paper. First; a numerical
evaeluation of the various Duhamel's integrals expressed as functions
of the variables describing the motlons of-the airplane is required.
Second, a method is necessary to evaluate numericelly a relationship
between the variables and their respective first and second derivetlves.

Since the indicilal response CLm(s) appearing in the Duhemel's

integrals approaches unity asymptoticelly, a convenient substitutlion can
be employed.so that the required integrations for succeeding intervals
need nqt be continued indefinitely. For this simplification the
substitutions required for the unsteady-lift functions are:

B(s) = 1 - clmw(s)l
o(s) = 1 - cI%<s)J

The functions B(s) and C(s) approach zero quite rapidly; therefore,
the integration of the product of this function with the derivative of
the arbitrary function may be cerried out in a few steps. If the prod-
uct of-the functions to be integrated be y(s), the desired value of
the integral at point m can be evaluated in recurrence form for six
intervals with the =aid of Simpson's rule by the following equatlon:

(A1)

Yo )
Ym-1
m TRy
' 2 42 Y-
fo' y(s) as = T = A‘Sbﬁﬁeiﬁﬁ’ﬁ‘ | (42)
Jm-5
(ym-é

where As 1s the interval of integration of the function y(s).
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The Duhasmel's integrals containing the downwash functions may be
simplified to ordinary type of integrals,,because step functions
represent the indicial responses. The integrals containing these
functions may be replaced by two simple integrels, differing only in
the upper limits of integration by an amount specified in the dis-
continuity occurring in the indicial responses. As an example, the '
following Dubemel's integrsl may be replaced by two integrals (see
fig. (3)):

81 81
QLea(Sl - 8)An(s) ds = -O.lﬁ?/1 An(s) ds »
. . 0

1
{2240,
1.158]:l (-C Mn(s) ds  (A3)

The evaluation of the Duhamel's integral now merely reduces to the
second problem, namely that of relating the varisble to its first
derivative since the integretion of the load factor is the first
derivative of the displacement divided by the acceleration of gravity.

When approximaeting the successive derivatives of a function
mmerically, the accuracy of the operatlions decreases for each operation
since the curve spproximeting each derivetive would have to be of a
lower order. As an exemple, if a function is repleaced numericelly by
parabolic segments, the numerical spproximations to the first derivative
would be a series of straight-line segments; the second derivative,
obviously, would be meaningless since its numerical spproximaetion would
be s constant for any value of the originsl function. On the other
hand, a numerical method consisting of successive integrations will
tend to reduce the error for each series of operations because the
curve approximsting each successive integration would be of & higher
order. Thus, if a function is replaced by parabolic segments, the
numerical spproximation to the first integration would be a series of
cubic segments-and the numerical approximation to the second integration
would be a series of gquartic segments. Consequently, for each con-
secutive integration, the accuracy of the numerical spproximations tends
to increase.

In the numerical solution, the highest derivatives of the variables
can be convenlently treated in the differentisl equations. Any
derivatives of lower order may then be obtained by successive .
numerical integrations. In. the previously derived equations of motion,
no derivatives of higher order than the second occur; therefore, two
successive integrations are required to establish the relstionship
between the variables and thelr respective derivatives.



26 N - . . NACA TN 2035

The first numerical integration of the varisble y(s) may. be
performed in the following manner: . '

J;sm y(s) ds =A%—l y(s) ds +fs:: y(s) as - (Ak)

When the function and its integral from O Yo sp.] are known, the
value of the integral from the increment sp.] to sy may be obtalned

from the known values ¥y 1, ¥p-2» ¥m-3s + + + » and the unknown

value ypm. The integration over the increment from sp-] to sy can
be performed in a menner analogous to that used in Simpson's rule. In
lieu of pessing a parabola through these points, & cublc assumed to
pass through four points may be used to accomplish the same purpose
with increased accuracy. Equation (A4) may be rewritten

Ym
_ Yy 9 19 '5 1 Ym-l .
Iz; Iy * ASEE:EE_} é‘)_pgﬂ zm_e (A5_)
m-3

For the double integration, an analysis similar to the one
previously dernived masy be utilized

5 ) Bm Sm-1 )
fmf y(s)dsds=fm1yds=fm Iyds+fm1yds (46)
0 0 0 0 Bp-1 ’

or, in terms of the double integration symbol IIy,

J/

2

4
| B E
) I]'!JIr\ = I%-l + ASLEQ’I’%%’_EE’E]ﬂ { Iy -2> (A7)
m-
. kIZ_3

If the value of T from equation (AS) is substituted in equa-
tion (A7), the double integration of the function y(s) cen be
written in terms of. the previously determined values of the function,
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its first and second integrations, and the function y(s) at the
next desired value sy as follows:

1
9 19

v 29 Ym-1 17 5 1
IT, = I]%_l + (8e)” Zxlspah 5;;,515! + As‘ﬁ,-ﬁ,gi-l %-2 (48)
ym_ | In-3

The solution of the equations of motion by equations (A5) and (A8),
together with the evaluation of Duhamel's integral with the aid of
equation (A2), can now be accomplished by a systemstic procedure.
Complete histories of the accelerations, velocities, and displacements
of the airplane gre computed simply by evdlusting, respectively, the

variables ¥y, and . The procedure can be continued for as
many steps as desired.

In order to satisfy the initial conditions of the differential
equations, the initiel values of displacements, velocities, and
accelerations may be substituted into the numerical solutions, For the
problem considered in this paper, all the initiasl values of the dis-
placements and velocities are zero, since the sirplane is assumed to
be in steady level flight before beirng disturbed by the gust. If the
gust velocity also increases from a zero value at time zero the initial
accelerations are zero &s well. The numerical solution may be regarded
as & recurrence formula for the values yp, Ig, and I which con-
stitute the acceleration, velocity, and displacement, respectively.
With the values et m together with those found at m -1, m - 2,
m-3, ..., the values at m + 1 can be found, In like msnner, the
other values of m can be obtained.
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APPENDIX B
CONSTANTS USED IN CALCULATIONS

When the differentlal equations of motion are transformed for
numerical evaluation, they can be written more simply by combining
groups of constants due to the alrplane parameters Into one constent.
These substitutions are made in equations (4) to (7) and are tabulated
as follows for convenience of calculation:

Ky = (dCL)W P yg Umex

da /v 2 W
=
da. B¢,
Kp = K jg5-ro 1 5
=,
deg
K3 = Ko 52~
d oS
Ky = (a‘or)w T
ch)
dx /¢ St
K5 = K) ac 13
(&,
de
K6 = K5 g
dCL.\ s e .2
Ky = (aa‘)w 7z V
i
do /+- St
Kg =Ky 7qqv "5
&),
dey
9=
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4Cr, S5t p 2 lw del
KlZ“'(EE’)tnTEV T @
K 4CL) £ 5t 2 doe
13 " \da Jt 2 W dd

o8t .ot Ap  |fOCL 4aCr,\ {ocL
Kbk =557 ?At+2<ﬁ§A+ a4, \3D5 )5

o
K15 = -5 UpaxVSeCh Ce

K16 = --g- csecegcha,
Kl'? = —% .‘|T2Sece0'h,cL

P 42 1t
K18 = 7 V"8eceClhy =

p de
5 CSecelhg G &

Kig

P .2 de
Koo = 5 V'5¢¢eln ax

by

- P2 de ‘W
K21 = -5 VSeceChy, 3, =

Koo = -g UnaxVSeCeChy, %

K23 = 5 \xfzsecech,5

p At |f3ch dCL) BCh) ot . hoPk
Kol = 2 VeSece Ay + 2 (ﬁg)A * (d_a.— t(ﬁg B ¢ * pVSegcCecC
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Wlwc2
Koz =
25 IV2
Wltce
o6 = 2

Ko1 = (Ie + Help - rls) {‘2‘

K28=(I + 2T ).:2

K29 = -(He + rHs)g

When the equations of motion are transformed to numerical form by
making use of the integral equations derived in appendix A, terms
common to the seme time interval, that 1s, at times m, m - 1,

m-2, ..., are grouped into one constant. These constants are
obtained for each time interval, each equation of motion, and each
variable and its integrals describing the motion of the airplane. The
constants formed by this grouping procedure are elements in the square
and rectaagular matrices in the recurrence formuls.

The constants are grouped with respect to the three equations of

motion. The following constants are due to the transformation of
equation (1) into recurrence form:

S
Bl =1+ 2%: AsEu - 0.158Kg + (1.158K5)m_ch + K5 - %‘-As (KyBo + KsCo)

Qﬂu:

Bo = (%A ) E{"( - kg + 0. 158K9 - (l 158K9)m_ + ASE'? As :B_O.

—

Co I
K8 As ? + Klo - Kll - 0.158K12 + (1.158K12 m_zc
L As|-K
3 58 {-K10B0 + Kllco)

E, = 2 As | ~K 2 A8 + Ki47 As 99 K + K A 99
3 3% 13 35 A8 * K13 88 = - Ky 14 58 3
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Ey = -Ky - X5 + 0.158K6 - (1.158K5)m_ch_1

Es = £ Os E7 +Kg - 0.158Ky + (L.158Kg)m-7¢, 1| - %

As (K"{BO + )-I-KTB]_

Kglo + 4gCy) - Ky + K3y + 0.158K)p - (1‘158Kl2)m-lcl,-l

EE = %As K7 - g + 0.158Kg - (1.158K9)m_ch_2 - %AB(K"(BQ + Kgce)'
Eq = %EAB]% + Kg - 0.158Kg +(1.l581<9)m_zc ]

g = %As(—K'yB)_l_ - KSCL;.)

g = %As (—K7B5 - KgCs)

10 = 5 ba(-K7Bg - KgC)
11 = Kq + Kg - 0.158K + (L.158Kg)y 3o

1o = K13 AS(% _%g ‘%Cl)"‘th

sk 1o
iy, = Ki3 As(—lE - 53‘- 03)
Ej5 = K3 As % Cy
E16 = K3 A8 % Cs
Biq = -Ki3 As 3 Cg

N
§ ( 733 + K8C3

.El8 = %% As l-:Kh_ - K5 + 0,15'8K6' i (1-158K6)E—ZCL-J] + %As (KltBl + K_5Cl)

+
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Epo

Epy

Epp

Eog
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: K5 - 0.158K¢ + (1 158K6)m “ep2| * g (KlpBe + Ksp) )

o
B
FTET

o]
>
()]

v

Ky - K5 + 0.158Ks - (1. 158K6)m-lc]3 él + %As(mg, + K5C3)

ns(xyBy + K50s)

wlE Wi

26 (KYB5 + K5Cs)

Wl

AS(K436 * KSCG)

o)y By g - xp D - o5y

(1 158K, '%Im 1o _ﬂ +ASI:K10§%-+K10 3B +Kll—% -Kll 3

0.158K;, 19 - (1.158K, “E)m-ch-lj

_E(As) I:K'?_%:+K7”—K8 +K8 +Ol58K9 .
(1'158K9 Egﬂ)m-zCL-e:f + 48 K10 5511 + K10 % B - K1 2%-‘_--K11 %—cg -

0.158K; 5 551; + (1-1581{12 ;E)m-ch-e

"~

. C <. .
élli(As)EE7 5911 - Xy 3_30_ + X8 59&.____ X8 _O - 0.158Kg —91;_+_

(l 156K —;; ] Eilo oL+ Klo g B3 + Kn —); K11 2753 *

1l
' 0.158K12 EE - <l‘l58K12 éE)m-ZCL—3]

As (K10B5 - K11C5)
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As (K10B6 - K1106)

WJ+

E29 =

19 9 o L
E3g = §1;As(1q3 3% As - K13 As 3 + K]_}.|.) - K14 As 3 C1

_ 2 9 Co 2

' 1 Co 4

2
E33 = ‘Kl’-l- As 3 Cy

L
E3y = -Ky) As 3 C5

1
E35 = -Kl)_l_ A8 g‘ C6

The following constants are due to the transformation of equation (2)
into recurrence form:

71 = 57 8 [Kps - Kofog + 0.158K6Keg - (1.158KeKog)m-1cy | -

3 0s (KuKesBo - Kske6Co)

Fp =1 + (g,; As)e E"TKES + Kgipg - 0.158KgKpg + <1.1581(9K26)m_ch] +
5% 4 ETKQS As B“3g + K10Ko5 - Kgog 48 ‘032 * Xy1Kpg + 0.158K15Kp6 -
(1-158K12K26)m_ZCL] + %AS (-KloKe5Bo - K11K26Co)

F3 = '2211 he <K13K26 §9£ bs - Ky3Kog s _039 + K14K6 ) - K14Ko6 As %o

Fy = -KyKos + KsKpg - 0.158KgKog +(l-l58K6K26)m-ch-1



34

NACA TN 2035

F5 = %As EYK25 - KgKog + 0.158KgKpg - (3--158K9K26)m-20L~3:l +

1
3 A8 (ko580 - MepKosBy + KgKoeCo + ¥KgKpgCy ) - KioKos - KiiKog -

0.158K; pKpg + (1-158K12K26)m-ch-1

% As (-KpkpsBp + KgKosCz)

1

no

Fr=3% ASE7K25 - KgKog + 0.158KgKpg - (l-l58K9K26)m-ch-3:l -

Wi+

8 (K7KpsB3 - KeKosC)

As (—K7K25Bl; + K8K26C1;)

]
(@+]
I}
wiro

Fg = %As(—K7KE5B5'+ KgKogCs)

1
Fio0 = 3 As(—K7K25B6 + K8K2606)

P11 = Krfes - Kgfag + 015856 - (1.15BKgRag) ., -1

_ Co L
F1z = -Kj3Kpg & % * Ky3Kp6 A48 37 + Ky3Kpg A8 3 01 - Kyukog

: 2
F13 = &s <K13K26 551; * K13K06 3 Ce)
i = As <-K13K26 515 + K13K06 -l3k 03)

2
F15 = K13Kp6 48 3 C

)3
F16 = K13Ko6 As 3 Cs
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P17 = K13K06 45 3 Cg

F18 = -é—%As EKth5 + KoKp6 - 0.158K6Ko6 +'(l'158K6K26)m'ZCL'JZI . :
% as(KikpsB) - K5Ko6Ca)

Pig = 2y A8 [KyKos + 0.158KgKp6 - (1.158KeKo6)m 10, -2 - K5K26:l ¥
2

As(K4K25BE - K5K2602)

3
Foo = ElE £s [-Kyps + KsKpg - 0-158KgKog + (1.158K6K26)m_ZCL_3] +

Wi+

As (K4K25B3 - K5K26C3)

e (KyKpsBy, - Koko6Ch)

=
no
'_.l
1
w]no

Fop = %AS(K#K%% - KsKpCs)

Fp3 = %‘-AS(KM_K25B6 - K5K26C6)

Foi = 37 (89)° E?K@ 5% - K7fes B?o - Kefo6 3 + Kgfag %9 + 0.158KgKpg 2 -
(1'158K9K25 éQE)m_zCL_liI’“ As E{10K25 %% + K10Kp5 % By - X11K06 %—19: +
K11Kog .31£ €y - 0.158K1pKp6 27 + (1.1581(121{26 %%)m-ICL-l

o5 = 7 (002 |-k B + rios 3 + Keas B K6 3 - 0-1585Ka6 2 *
(1'158K9K26 591;)111_1 cL-E:' + As EIOKQS 55;; + K10Kp5 % By + K11K26 555 +

2
K11K06 % Cp + 0.158K10Ko6 3 - (1-158K12K26 EI)m-ch-e
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. Bo ' Co
Fog = %E(AS)EETKQ? 5971_'_ Kqkps 5 - Kgkog 59,: + Kgipg -5 + 0.158KgKpg .2%: ;
_ - Y | .
(1.158K9K26 %)m-z%-;[ + As EKloKes a% + K10Ko5 3 B3 - K13Kpg 3 +
L 1 1
K11Kp6 3 C3 - 0.158K10Kp6 57 + <1-158K12K26 EE)m-IcL—gl
Fo7 = AS(KloKesBLL + K11K26Ch)
Fog =
1
Fog = 3 As(KiokesB6 + K11K26C6)

C L
F3g = ;9 AS('K13Ké6 Ls g% + Ky 3Kpg A8 ?? - thKé6) + K14K26 Ls 3 C1

e

Co o
F31 = g o8 <K13K25 26 & - Ky3Kog Os 3 ¥ KluK26) + K34Kpg A8 3 Cp

Co 4
F3o = 5 A’5('K13K26 Bs - + Ky3Kpg As 3" thK26) + K1ukoe 28 £ O3

2
F33 = K11Kp6 &s 3 C
L
Fay = K146 88 3 Cg
1
F35 = Kj4Kpg As § Cg
F36 = -K13Ko6

The following constants are due to the transformation of equation (3)
into recurrence form:

G1 = Kpg - E%:_As El6 - 0.167?{19 + (l.lG’?K]_g)m_z_:J
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Gp = Kpy + ('Q%IAB)EEIT - 0.16TKyo + (i'lGTICQO)m'Z;} )
- ns[ag - 0.16Tkyy + (1.1671(21),1_2;'
G3 = K28 - Kea(As 5:)2 Kol 85 3
Gy = Kjg - 0.16TKjg + (1.167K19)m-1€.1 :
s - %ASEK]_-{ + 0.26TKnp - (1.167K20)m_ze_]:l + Kg - 0.16TKpy +

(1.1671{21) m-le-1
oG = ESEAB K17 - 0.16TKzo + (1.1671’(20),,1_7,6_;]

Gy = %—E As |-Ky7 + 0.16TKpqg - (1-167K26) m-le-ﬂ

G8=K23AS%+K21I-

Gy = -Ke3 Ae
1
Gio = Kp3 48 5y

G = -%E-As El6 - 0.167K1g + (1.1§7K19)m_z€_;l

Gip = o 88| Kyg + 0.16TKyg - (1.1671{_19)11‘_.26_;]
L |

Gy3 = o As (ki - 0.16TKyg + (1.1671(19)1,1_15_3;]

. . 9 9 )
Glh» = %%AS EK17 As §9'E + K18 + 0.1671%0 As ,-2-11 - (1.1671{20 As EE)m-ZG'l

0.16TKpy + (1.1671{21)1,1_16_1__]
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a5 = 2 45 [Kay o S - Kig - 0.26Tpg As £ + (1.16Th0 As ), 5 +

0.167Ky - (1.1671{21)],1__36_2]

1
a6 = gy bs[Haq s F+ Kyg + 0260 B - (1.16TKag 28 Flnzc-p -

0.16TKp] + (1-167Kal) m-ze_-_g_l
G171 = 5% AS(KI% 2o F + K24)
18 = 5 b (o3 49 3 - )
1 9
ag = 77 S0(Ke3 40 5T + el
Goo = X3

Gp1. = -K17 + 0.167K20 - (1-167K20)m-1€-l

The elements due to the constents E, F, and G are put into—
matrices which modify the variables and the integrals describing the
motion of the airplane. The matrix describing the variables at time m
is a square matrix that must be inverted in order that the variables
at—time m can be solved simultaneously. The elements for this
inverted matrix form the square mstrix [M] which appears in the
recurrence equation (10). The elements of the matrix [M] 1s defined
in terms of the constants E, F, and G as follows:

ERR
[M] = |m, 5 ¥g

My M
M Yo Y
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where
M
Mo
M3
M,
where

FoG3 - GoFj3 EJGS - G1E3
=—-—N_——-—— = N
_ GoE3 - EpG3 _ F1E3 - B1F3
=T Mo=—"TF
_ EpF3 - FoEg _ FiGp - &Fp
= X Mr=—"%
_ GF3 - F1G3 _EgGy - EpGp
= w Mg = —x

_EiFp - Fikp
Mg = N

39

The matrices describing the variables and the integrals at

times m -1 to m -6 form a set of rectangular matrices.
rectangular matrices consist of the elements defined by the

constants E, F, and G. The matrices are given for each time interval

as follows:

E18

I

L]
=
(0]

(5]

]
=

Bl = 1P

Eoy  E3o
Fau T30
Gy Gy
Eps  Eg
Fos  F3
G5  Ci8

El
Fy

Gy

E5

Eio Eny
Fip Fpy
Gg Goy

These

E3éj

%20 |
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Eop Eprp E3p Eq Eyy

[53:l =120 26 Fan Foy Fly
G G5 Gy & oy

Eo1 Eo7 E33 Eg Ei5

i

[5]

Epo Exg E3y Eg E16

Fog T3 Fg  Fi6

5]

it
N
o

[56] = | Fo3 Fag F35 Fi10  Fi7

All the square and rectangular matrices which have been defined
previously are for the stick-free condition. The recurrence formuls
given by equation (11), however, is & solution for the stick-fixed
conditions and can be obtained by modifying the stick-free matrices.
This modification comsists of-eliminating ell the G constants and
those E and F constants in the rectangular matrices which are post-—
multiplied by the variebles in the column matrlces that represent the
acceleration, velocity, and displacement of the elevator. The matrices
for the stick-fixed condition are written with s subscript zero and are
defined as follows:
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(],

[s1]

(52l

53l

[5ag

8510

[56],

Fo
EjFp - EpFy

.Fl
EiFp - EoFq
—il8 Eoly
LE;B Foy
Eig Eos
F19  Fo5
[Eoo Exg
2o Tog
ES Eo7
Fo1 . Tor
Epp  Eog
[Foo  Fag
-Eé3 Exg
Fo3  Fag

_ B |
E Fp - EoFy

Ey
B Fp - BoFq

Es Eq
F5 Fiq

M
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APPENDIX C
FORCING FUNCTIONS

The forcing functions Uy, Up, and U3 are dependent upon the
shape of the gust that the sirplane is penetrating. If the unsteady-
1ift functions are known for the sharp-edge-gust condition, the
evaluation of the forcing function is very simple and mey be calculated
for the sharp-edge-gust condition from the following equations:

’ g b h -
?1 KiCLg,, KSCLEg KoCLg,
1Uef = (KiKesCrg, p + ~K3K26CLe,r + | KeKeblLgy (c1)
U 0 ~Koo€ -K
Lut + C
where, In the recurrence formula, T = —————— represents the time

c As
interval that the airplane has to travel before the tall enters the
gust: For m < T, the terms having the subscript m - T are neglected
in the calculation of the forcing function. On the other hand,

for. m 2 v these terms are included. (The value of T must be taken
to the nesrest—Integer.)

Because of the discontinuities of the functions €g and CLES

(see-figs. 2 end 3), two values of the forc1ng function exist at both the
points m = ZCL + 75 and m = 1. + ———z In order to overcome this

difficulty when evaluating the recurrence formula, two values of the
forcing function are calculated at this point. The recurrence formula is

evaluated st times m = I1Cp + ——= Q. 75 and m = l + 9412 by use of the

first value of the dlscontinuity*and then reevaluated by use of the second
value. Therefaore, the recurrence formula gives two-valued solutions of

the equations of motion at the points m = ECL + ?Azs and m = lg+ 9&75 .

In order to evaluate the formula at time m + 1 and at succeeding
intervals, the first solution obtained from the recurrence formula is
neglected, thereby the second one is used as the solution for succeeding
calculations, The numerical solution to the equations of motion therefore
contains discantinuities due to the functions €g and CL¢ . For most
cases, however, the magnitude of 1, and I¢p- are approximately equal;
therefore, when these two distances are taken to the nesrest integer

of m, ZE can be taken equal to ZCL and only one discontinuity

appears in the solution.
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For an arbitrary gust shape, s number of Duhsmel's integrals have
to be evaluated for determining the forcing functions. These operations
may be performed graphically or by various numerical methods shown in
reference 5. The corresponding forcing functions for the arbitrery gust
shape may be calculated from the following equaiions:

- -
<Uop = <¢KiKos®yy + J-K3K26¢ew> + 1-KoKo60t (c2)
' ' U
U 0 Koot I
3 2 15
S 7m ‘m - ‘m Uma.x)m_.r
where
-
U

s1 N —
b, (s) =j; CLgW(Sl - 8) gﬁax ds

a2

5
%, (s) =j; * C‘Lgt(sl - s)-d—UI:ax.ds

) - (c3)
U
81 d —
ﬂbew(s) =J; CLeg(sl - 8) dx:a.x ds
U
Sl d =—
t(s) =.f0 €g(sl - 8) g:;ax ds
/

If the response of the airplane for a number of arbitrary gust
shapes 1s required, an alternate method would be far more expeditious.
By first calculating the motions of the airplane for the sharp-edge-
gust condition, the motions for each degree of freedom way be considered
as indicisl responses in Duhamel's integral. When the gust shape is
utilized es the arbitrary forcing function, the response for each degree
of freedom mey be calculated by Duhamel's integral in s manner
analogous to that used in calculating Uy, Up, and U3 for the
arbitrary gust shape. Although the calculation of the response for the
sharp-edge-gust condition would require additional work, the extre work
is negligible when two or more responses to aerbilitrary gust shapes are
desired.
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acL

(EETJW’ per radian

d
Gﬁ?&t, per radian

S, sq ft
St, sq £t
p, slugs/cu
Vv, ft/sec .

N e o o o
dep

lys Tt

For c.g.
For c.g.

For c.g.

Zt, ft:

For c.g.
For c.g.
For- c.g.

Tots £E ¢ .
U, ft/sec .
g, f£t/sec?®

I, slug-ft2
c, ft . . .
cg, £ . .
W, 1b . .

£t

e & & &

center for wing

« & 5 & & s & 8 s
« ¢ o & s o e =
- « o s s .
¢ e & e o s &
e s s & & & s e e
® o s e & e & &

at 12% percent M,A.C. .
at 25 percent M.A.C. . .
at 37%-percent M.A.C. . .

1

at 125 percent M.A.C. . .
et 25 pércent M.A.C. . .
at 37% percent M.,A.C. . .

« ¢ a . a
e e e & o
*« & @ « &

L 1 .
. « . s
LR} a e

a e .

5

5.56

. . 3.21

738
.. 275
0.002378
308
0.85

. 0.500
. 25

. -1.26

1.26
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TABLE II
CALCULATED VALUES OF AIRPLANE STABILITY CONSTANTS INVOLVING
ONLY THE STICK-FIXED CONDITION FOR CENTER OF GRAVITY

AT 25 PERCENT M.A.C.

K1 = 1.9772 _ kg = 2.2272
Ko = 0.36156 . . I Kg = -1.1136
K3 = -0.18078 K10 = ©

Ky = 0.0k13k2 : Kj7 = 7.8798
K5 = 0.0075599 "Kjp = 0

Kg = -0.0037799 Kp5 = 0

Ky = 12.180 Krg = 0.0067616
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TABLE IIT
TRANSFORMED UNSTEADY-LIFT FUNCTIONS DUE TO UNIT JUMP OF
ANGLE OF ATTACK ON WING AND TAIL FOR INFINITE

ASPECT RATIO FOR INTERVAL As = 1.5 CHORDS

B(s) =1 - CLg,(s) c(s) =1 - CLut(S)
Bo = 0.500 | Co = 0.500
By = 0.280 C; = 0.240
By = 0.181 Co = 0.1h7
B3 = 0.133 C3 = 0.106
By = 0.105 C) = 0.08k
By = 0.088 C5 = 0.063
Bg = 0.075 © Cg = 0.057

b



TAHE IV

YALUEE OF E ARD F ELEMENTS IN MATHICRS [K]y AMD [5J; AS A FUNCTION OF VARIAHLE m

POR AN AIRPLANE WITH CENTER OF GRAVITY AT 25 PERCENT M.A.C.

X and F =] m=2 m =28 m=3 mw --5]’
E 1,015 1.0156 1.0131 1.013L 1.0131 1043
n -, 000010246 - ~. 0000015975 -.000001797S . 000Q0L59TS -.000001%75
Eo -5, | -5.0506 .6h04 - <l Shp6 .65 =k.oke6
o 1.01967% 1.0196Th 1.016516 1.016016 1.016516 1.016516
b - -.0hgkgy -.ougfgg —.Chm12p -.0lsles -.04m100
% 1.833055155 .323055155 .gggo;:lss %0025559 goem 3?3025559
21, 21. o, 19. 19. 1g. -
Fs, -, 070717 -.0TOT1LT -.0TOTLT -.05%58 -.075458 -.z;e&
7 ~7.0883 -7.0883 -7.0883 -7.0883 -6.6853 -5,
s .00TR856 007856 .C0T2856 . 0045600 0045608
By -2.8010 -2.8010 -2,8010 -2.8010 -2.8a10 -2.8616
¥ . . 0021800 0021800 . .
lg -1.46%% ~1.4655 -1.4655 -L.kE95 -1.5k635 -1.k6%%
¥8 0 -00126e0 -0012620
;9 -2.4493 -2.4493 -2.4453 -2.8493 -2.4%93 -2.5493
lg_o - 00poG5a . 0020662 . 0020662 .00e .
-.5e023 : ~. 025 - 22025 =.2e023 - -.Be0235
F . 000858390 .000k29195 R L000k29195 000429155 000k
% u.gggﬂ% 1&.05?362~9 J.h.ggeus 13.829% T 13.29k 13.2};5@97
—a ~ . - -, 00 -, -
g -0 -.0315969 ~.D3IL5969 —mg --026799 -.026799
E.]'B " mnlacn Pt et 'Mlnﬂ\m’ oo 2 jponniiy
nw - LA AULA) AR oA »'WHG RS LA =t T L 2=,
;128 -.00002kT30 =.000024T30 -.0000RKT30 - 00002530 - 0O00L5MEL -.000015k831
0095075 009B0TS .009%0TS 0095073 L0950 TS 0097611
¥, -, 0000073998 ~ - - -0 ~. 0000092196
4 "oodoThk [oohoTRE colo7Rk v/ el “oolgTl
™ -.00000k2B36 - -« DOQ00kS: -.DO0O0RA B : -.00000k2®38 1}
Ro -0083134 -00831 3k 0083134 ! .0083134 .00B313h .0083134 _ I
Foo - - - -.00000T0L33 - 0000070133 -.0000070133
X2 -oaL7638 -QOLTE38 -0017658 0017638 .00LTER8 0017658
Fai -. 00000145685 - . 000001 k=685 -, 000001 -.00000). - 00000145685 . 000001 k568
) 11.036 11.036 11.036 10.17% 10.17% 10.17k .
2; _5.0!#!057 ;.olunoﬂ'r N 5.03&33 -.&%33 "3238533 el
y -5, -5.0555 ~5.05%55 . .
K .ﬁu .%u .OR615L L0261k .02k608 . 0eh608
P - -.89e03 ~.89203 -.89203 285203 -.93731
:575 . 1 0076401, L0QTEROL .00TBH0L K .0073339
7 -»66033 -.66033 -.66033 -.66033 -.56033 -.66033
¥, LONRERG .C0lhE4g .00kkEky .00khELG -00LAERY -00hkERD
# -, 1081 -.10811 -.10811 -, 10811 -.10811 -. 10811
5 0073100 .00T3100 .00T3100 0073100 0073100 0073200
2y . - 22453 -.22h573 -.224575 -.24573 -.22h573 --22W573
Tag LO017LES 0015185 .COLT1B5 0015153 LoOLLED .Co115m

"Two mluas oceur at = = 2 because of the effect of the fumetlom CLg, on the tall,

Bpor all values of m  greater than 3, use the valnes of E sl F ip the colusn for l-::.

arl'f
11

3h

GEoe NI VOVN




TARLE V
CALCULATED FORCING FUNCTIONS Uj;, AND Uz FOR A SHARP-EDGE GUST

FCOR AN AIRPLANE WITE CENTER OF GRAVITY AT 25 PERCERT M.A.C.

GE02 NI VOVN

@ 3 ® ® ® @ ©)
KiCr, |Xecr K3CLe . |(U1)m =@+ +@ikes(®) k26Q) | *26® |(Uoln =®+D+®
Sim| g & -
o| 0 0 0 0 o |o 0 0
1| 1.2456| © .02856 1.27h 0 |o .00019311 -.00019311
21 1.5323| 0 .02856 1.5609 o |o ~.00019311 -.00019311
2| 1.5323| O -.18078 1.3515 0o |0 .001222Lh .0012224
3| 1.6628) .24980 {-,18078 1.7318 0 |~-.0016890! .0012224 -.0004666
| 1.7301| .29724% |-.18078 1.8466 Q |-.0020098| 001222k -.0007874
51 L7715 31626 |-.18078 1.9130 0 |-.0021384 | .Q012224 - . 0009160
6| 1.8111] .32692 |-.18078 1.9572 0 |-.0022105| .o0lp22h4 -.0009881
71 1.8388 33433 {-.18078 1.9924 0 |-.0022606| .0012224 -.0010382
81 1.8605| .34001 |-.18078 2.0197 0 |-.0022990| .001222k -.0010766
9 | 1.8803| .344k2 |-.18078 2.0439 0 |-.0023288| .o012224 -.0011064
10 | 1.8922] .34797 |-.18078 2.0594 0 |[-.0023528| .0012224 -.0011304
11 | 1.9040 35075 |-.18078 2.0740 0 |-.0023716| 001222k -.0011Lk92
12 | 1.9129 35295 | -.18078 2.0851 0 |-.0023865| .0012224 -.0011641
13 [ 1.9219 35473 | -.18078 2.0959 0 [-.0023985| .001222h -.0011T76L
14 | 1.9278 35614 | -,.18078 2.1032 0 [-.00240811 .0012224 ~.0011857
15 | 1.9327 35726 |-,18078 2,1092 0 |-.0024156| .001l2224 -.0011932
. NACA

A

'511'




Fiqure = forces and moments assumed acting on
anplne alring penerrarnon oF a gust ( D/s/fc:wc:eas1
T orees, ond /?70/778/77‘ s SHowsn 1 pOSf/Ve aireciiory

Ct0e NI VOVN
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- /67~
ghmj
Lt
S 2 r095— -
/1000 [ 1 ’ | 1 f [
o / 2 3 4 5 &

S, chords
(b) Due fo penetraton of wing wfo a shorp-edge gust:

rrqure 2 .~ Mormatized unsready-chwnweosh angle af
lorrzoniof Yo



52 ' ' NACA TN 2035

- L58
g8 9
\‘lv wa+0 50
Q) = C -OU—
/[.Co0 l | | 1 f
0 / 2 3 4 g

S, chords
@) Dueifowutl yump of angle of attack on wing.

(S:/ gcg _'('—-.75 —
~ Lt
Q e W 4T >
C
000 il | ' | | !
g / 2z J 4 v}
S, chords

(8) Due fo penetrartion of wig mio a sharp-edge gust.

Figure 3 . — f7fectve sormalzed wisteady-iff function
on the 1ol
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Figure 4.- Comparison of numerwcal and exactl solufrons
of 7fie LiFf coelrcient on o wing pesetraring
a stono-edge qus?. Hg = /13.2.
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&
X O forward c.g.
§ O Rearwora c.q.
J A Average ¢.g.
/3
O | |
o /0 0
Gradient distance, clords
]
2

§ o——a—1p
L

O Shanp-edge gust
O /Qclord graciess
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C.g,percent MAC.
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L0S/7100 0n qust foad factor: |
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